Мы уже затронули при рассмотрении объективов такого понятия как фокусное расстояние. Чтобы более детально разобраться с ним, необходимо вспомнить школьный курс геометрической оптики. Я напомню некоторые базовые понятия, необходимые нам. Взгляните на изображение. Мы имеем объект съемки (1) - свечу и линзу объектива (2). Согласно законам физики двояковыпуклая линза переворачивает изображение объекта (3). Теперь определим плоскости: 4 - плоскость объекта съемки, 5 - плоскость, проходящая через центр линзы. Линия 8 называется главной оптической осью, она проходит строго перпендикулярно через центр линзы и относительно неё получается перевернутое изображение (3) на плоскости изображения (7). Линия 9 представляет собой световой поток, или другими словами луч, исходящий от объекта (излучаемый или отражаемый, который преломляется в линзе на границе сопряжения двух сред (воздуха и стекла) дважды (при входе в линзу и при выходе).

Плоскость 7, также называется Фокальной плоскостью и она является особенно важной для получения изображения. Именно на этой плоскости устанавливается матрица или пленка. На самой камере эта плоскость помечается специальным значком, для того, чтобы можно было оценить расстояния при макросъемке.

Теперь еще немного физики. Все параллельные главной оптической оси лучи света, исходящие от бесконечно удаленного объекта и входящие в линзу собираются в точке фокуса, т.е. на фокальной плоскости.

Я не упомянул плоскость 6. Её иногда путают с фокальной плоскостью из-за пересечения света и главной оптической оси. Однако, это пересечение конкретного луча света 9, входящего под конкретным углом в линзу от объекта, находящегося на конкретном расстоянии от линзы. Для луча света от объекта, находящемся на другом расстоянии, пересечение будет в соответствующей другой точке. Эту схему мы еще изучим при рассмотрении темы ГРИП. При фокусировке на более удаленном объекте (левее от линзы на изображении) нам придется передвинуть линзу также влево, для того, чтобы получить четкое изображение на фокальной плоскости, при этом плоскость 6 также сдвинется немного вправо. Здесь может возникнуть вопрос: при фокусировке, т.е. при сдвиге линз относительно фокальной плоскости должно меняться и фокусное расстояние? Ответ: для большинства объективов это не так. Чтобы в этом убедиться, фокусируйтесь в ручном режиме глядя в видоискатель, вы скорей всего не увидите изменения масштабирования кадра.

Фокусное расстояние - это расстояние от задней (или второй) главной точки объектива до его фокуса при вхождении в объектив пучка света, параллельного его оптической оси. Задняя главная точка в случае идеальной двояковыпуклой линзы размещается ровно в центре линзы. Задняя главная плоскость в этом случае совпадает с передней и проходит ровно через центр. Поэтому фокусное расстояние в этом случае будет от центра линзы (а не от поверхности её!) до фокуса. Но вы, возможно, уже знаете, что реальные объективы состоят из набора линз, а зум-объективы эти линзы объединяют в группы, которые перемещаются относительно друг друга. Взгляните на изображение объектива в разрезе.

Так вот в зависимости от конструкции объектива, точнее от его оптической схемы задняя главная плоскость (и соответственно задняя главная точка на ней) может находиться как внутри объектива, так и вне его. Используя различные виды линз, производители добиваются смещения этой плоскости и решения задачи создания объективов с различными фокусными расстояниями. Взгляните на изображения (взято из журнала "Наука и жизнь", №10, 1999 г.) Здесь представлены некоторые оптические схемы объективов:

а - нормальный объектив (f - фокусное расстояние примерно от диафрагмы до фокальной плоскости)
б - длиннофокусный объектив (f - главная задняя точка находится перед объективом!)
в - широкоугольный объектив (f - главная задняя точка находится за объективом!)
б - зеркально-линзовый телеобъектив (f - главная задняя точка находится также перед объективом!)

Поэтому ОШИБОЧНЫ следующие утверждения (иногда случается слышу от разных фотолюбителей):
1 - фокусное расстояние это расстояние от поверхности последней линзы, до матрицы
2 - фокусное расстояние это расстояние от поверхности передней линзы, до матрицы
3 - фокусное расстояние это расстояние от поверхности передней линзы, до байонета (конструкция крепления съемного объектива к камере)
4 - фокусное расстояние это расстояние от диафрагмы, до матрицы
и т.д. возможны различные сочетания. Конечно, в каких-то конкретных случаях оптических схем некоторые утверждения возможно и верны, но это частные случаи и никак не могут отражать определение понятия фокусного расстояния. Например, для нормальных объективов типа "полтинник" главная задняя точка действительно располагается приблизительно в области диафрагмы.

Фокусное расстояние - это расстояние от задней (второй) главной точки (плоскости) объектива до фокальной точки (плоскости).

Разберемся на что влияет фокусное расстояние и почему невозможно иметь только один фикс-объектив на все случаи жизни (хотя, говорят, Картье-Брессон обходился всю жизнь полтинником).

Легче всего это понять на зум-объективе, на котором мы можем изменять фокусное расстояние. Визуально мы видим приближение и удаление изображаемой картинки. Если попытаться понять из-за чего это происходит, то мы придем к выводу, что мы в сущности меняем угол обзора в объективе вытягивая его и наоборот (в некоторых герметичных объективах "вытягивание" происходит незаметно внутри корпуса)! Фокусное расстояние объектива в зависимости от размера матрицы и определяет угол поля зрения объектива — максимально возможный угол между двумя лучами света, прошедшими через объектив и ограниченный диагональю кадра. Почему диагональю? Да потому, что объектив - круглый, а матрица аккуратно вписывается в этот круг (исключение составляют объективы для полноформатных камер, используемых на кроп-камерах и в этом случае говорят об эффективном фокусном расстоянии - ЭФР). На просторах интернета нашел изображение неизвестного мне автора, которое очень хорошо отражает изменение угла обзора в зависимости от используемого объектива. Чем больше фокусное расстояние — тем меньше угол зрения

Существует формула определения угла обзора, в зависимости от фокусного расстояния объектива:

Зум-объективы, как уже не раз было сказано, позволяют менять фокусное расстояние. И вроде бы это очень удобно, т.к. нет необходимости бегать назад и вперед, чтобы найти нужную композицию, да в сумке таскать несколько объективов и менять их для каждого случая съемки. Но, нужно помнить при этом, что использование конкретных фокусных расстояний должно в большинстве случаев соответствовать расстоянию до объекта. Почему? Потому, что расстояние влияет на перспективу! Очень популярно приводить в качестве иллюстрации следующее изображение.

В зависимости от расстояния до объекта мы по разному видим перспективу. А угол обзора определяется этим расстоянием.

Важное замечание: изменение фокусного расстояния не изменяет перспективу, но изменяет угол обзора и, соответственно, изменяет масштаб кадра. Перспектива меняется с изменением расстояния до объекта. То есть, необходимо изменять расстояние до объекта, чтобы скомпенсировать изменение фокусного расстояния. Взгляните на следующие фотографии. Они сделаны с разными фокусными расстояниями (подписаны снизу), но при этом фотограф отодвигался назад, для чтобы не менять пропорции объекта съемки в кадре. Теперь оцените первую (10 мм) и последнюю (300 мм) фотографии, по-моему это два разных человека :).

Очень часто вижу, когда люди пытаются фотографировать портреты с очень близкого расстояния в широкоугольном положении объектива (18, например, на Canon EF-S 18-55 IS), при этом лицо на фотографии получается немного смешным, т.к. нос (ближайшая точка к камере) становится большим, а задняя часть головы как бы сдавленная. И самое печальное, что многих такие фото устраивают. Не стоит думать, что чем больше ФР - тем лучше, вовсе нет! При длинных ФР портрет, к примеру, становится "плоским".

Взгляните на следующий фотосет, на котором наилучшим образом показана зависимость изменения перспективы от фокусного расстояния и расстояния до объекта, при неизменном масштабе объекта в кадре.

Человеческий глаз имеет угол обзора в районе 46 градусов, поэтому говорят, что ФР 50 является "нормальной" величиной для объектива. Согласитесь, что наиболее естественным является кадр, снятый с ФР = 50 мм. С другой стороны кадры с ФР 135 и 200 выглядят необычно и, может быть, даже выигрышно с художественной точки зрения и мне лично они больше нравятся.

Иногда можно услышать почти магическое выражение (в программе многих фотокурсов можно прочитать такое): эффект схождения вертикальных линий при наклоне камеры. Под наклоном понимается именно наклон или поворот относительно плоскости матрицы (вверх, вниз, вправо, влево), а не вращательный поворот относительно оптической оси. Это явление тоже относится к определению перспективы. Если мы будем снимать параллельные линии, нанесенные на плоскости строго перпендикулярной главной оптической оси, мы увидим их параллельными на готовой фотографии. Если камеру наклонить, линии начнут сходиться, поскольку часть линий будет удалена от камеры, а часть наоборот приближена. Если мы рассматриваем картину, на которой изображено, например, поле и уходящая вдаль дорога, мы видим, что дорога чем дальше от нас, тем уже. То есть линии, которые в природе вроде бы параллельны, отдаляясь от камеры сходятся. Я думаю, что это совершенно очевидные вещи для любого хоть сколько-нибудь образованного человека.

Говоря о зеркальных камерах нужно разделять их на полнокадровые и "кропнутые" (обрезанные). На полнокадровых камерах размер матрицы эквивалентен 35-мм пленке, а на кропнутых используются уменьшенные (обрезанные) матрицы. Из-за этого камеры имеют столь разительную разницу в цене. Для камер Canon кропнутые матрицы в 1,6 раза меньше своих полноформатных собратьев, поэтому говорят, что их кроп-фактор равен 1,6. Взгляните на изображение. Красная рамка очень условно обозначает границы кадра полнокадровой камеры, а синяя рамка - кадр кроп-камеры.

На что же влияет этот кроп-фактор? Из-за того, что мы фактически вырезали центральную часть кадра, мы фактически уменьшили угол обзора и фактически увеличили фокусное расстояние. Это ФР называется Эффективным Фокусным Расстоянием (ЭФР). Таким образом, "нормальный" 50 mm объектив для полноформатной камеры на кроп-камере превращается в 50*1,6=80 мм. Сразу уточню, что на EF-S объективах Canon, которые специально проектируются только для кроп-камер пишутся обычные нормальные ФР, а не ЭФР. То есть если мы видим 15-85, мы мысленно теперь должны понимать, что это эквивалентно 21-136.

Можно иногда услышать, что кроп-камеры крайне удобны для использования с телеобъективами для съемки спортивных состязаний, из-за увеличения фокусного расстояния. Например, накрутив объектив 70-200, мы получаем ЭФР в 200*1,6=320мм! Да, в определенных условиях такой подход оправдан.

Из этой статьи важно усвоить три вещи. Во-первых, необходимо использовать подходящие фокусные расстояния для каждого случая: очень грубо, ландшафты снимаем на широкоугольник, портрет на полтинник, удаленные объекты - на телевик. Во-вторых, необходимо правильно оценить получаемую перспективу в кадре и выбрать нужное расстояние до объекта, а не просто крутить зум-объектив как вздумается. И в-третьих, чем больше фокусное расстояние, тем сильнее размытие вне зоны фокусировки и это важное свойство используется для формирования нужной глубины резкости (ГРИП), но это мы рассмотрим в отдельной статье.

Дополнительные материалы:

КОРОТКО ОБ ОБЪЕКТИВАХ

Домашнее задание

Сделайте самостоятельно серию портретов с разными ФР, как показано на выше на фотографиях с девушками. Диафрагму держите открытой, ISO можно выставить в режим auto. Соблюдайте точно размер портретируемого в кадре. Для этого придется двигаться вперед-назад. Оцените перспективу и размытие фона.

 

 

 

Добавить комментарий


Защитный код
Обновить